Fie A o matrice de tipul (m,n) si B o matrice de tipul (n,m).
Dacă 4(AB)^3 + 3 (AB)^2 + 2 (AB) +I m = 0m
Atunci
a) m=2
b) m=3
c) n=2
d) m=n
e)( AB) ^4 = Im
f) det (AB) =0
Inregistrati-va pentru a beneficia de cunostintele comunitatii, a pune intrebari sau a a raspunde la intrebarilor celorlalti.
Suntem o comunitate care incurajeaza educatia si in care se intalnesc know-how-ul si experienta cu perspective inovative de abordare a problemelor.
Autentificati-va pentru a pune intrebari, a raspunde la intrebarilor celorlalti sau pentru a va conecta cu prietenii.
V-ati uitat parola ? Introduceti adresa de email si veti primi o noua parola.
Please briefly explain why you feel this question should be reported.
Va rugam explicate, pe scurt, de ce credeti ca aceasta intrebare trebuie raportata.
Motivul pentru care raportezi utilizatorul.
Am găsit ca daca m<n , atunci det(AB)=0.
Dar dacă m=n …Nu mai stiu
Invers, dacă m>n, atunci det(AB)=0. Această ultimă egalitate este imposibilă deoarece, din
deducem că AB este invsrsabilă.
Dar, în textul original al problemei, chiar nu se spune nimic despre elementele celor două matrici, sunt complexe, reale, raționale?
Incerc sa rezolv aceeasi problema, dar nu am reusit decat sa umplu degeaba cateva pagini🙁
In enunt se mai spune ca cele 2 matrice au elemente reale, si ca 3>=m>=n>=2. Variantele c si d nu par corecte, pt ca matricea AB ramane de tip (m, m). Deasemenea, f-ul din motivul dat mai sus. Varianta mai logica mi se pare e-ul, dar nu am reusit sa gasesc o demonstratie. Orice ajutor este binevenit🙂