Buna ziua , o problema care nu imi da pace suna asa :
Fie o Matrice X patratica de 2 linii si 2 coloane cu proprietatea ca
matricea X^3 are pe prima linie ( 4 3) si pe a 2-a linie (-3 -2) => X = ?
Am reusit sa demonstrez ca daca in matricea X am nota elementele ei cu a,b,c,d , unde a,b sunt pe prima linie si b,c pe linia a 2a .. am demonstrat ca c=-b si ca a-d=2b . Si de aici m-am blocat ..
O finalizare posibilă.
Acum
![Rendered by QuickLaTeX.com X^3=A\Leftrightarrow (cB+dI_2)^3=-3B-2I_2\Leftrightarrow \\c^3B^3+3c^2dB^2+3cd^2B+d^3I_2=-3B-2I_2.](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-8e93fdb69d66774ee9bf69137100e039_l3.png)
![Rendered by QuickLaTeX.com B^2=-2B-I_2\Rightarrow B^3=-2B^2-B=3B+2I_2.](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-d3e74e7a4abd5b280de900ad057739a7_l3.png)
![Rendered by QuickLaTeX.com c^3(3B+2I_2)+3c^2d(-2B-I_2)+3cd^2B+d^3I_2=-3B-2I_2\Leftrightarrow \\(3c^3-6c^2d+3cd^2)B+(2c^3-3c^2d+d^3)=-3B-2I_2.](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-5cc07644b078804356632333faab8e4d_l3.png)
deducem sistemul:
![Rendered by QuickLaTeX.com \begin{cases}3c^3-6c^2d+3cd^2=-3\\2c^3-3c^2d+d^3=-2\end{cases}\Leftrightarrow \begin{cases}c^3-2c^2d+cd^2=-1\\2c^3-3c^2d+d^3=-2\end{cases}\\\Leftrightarrow \begin{cases}c^3-2c^2d+cd^2=-1\\c^2d-2cd^2+d^3=0\end{cases}\Leftrightarrow \begin{cases}c(c-d)^2=-1\\d(c-d)^2=0\end{cases}\Leftrightarrow \begin{cases}c^3=-1\\d=0\end{cases}](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-58b5a269f9058d465bc8b5eae315c0d9_l3.png)
![Rendered by QuickLaTeX.com c\in \left \{ -1,\,-\epsilon ,\;-\epsilon ^2 \right \}](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-36eaaecc800873559481995d44fb8699_l3.png)
![Rendered by QuickLaTeX.com X\in \left \{ -B,\,-\epsilon B,\;-\epsilon ^2 B\right \}.](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-4c324adb29ec4afbf53f68c6c3f99816_l3.png)
Scoţi b=-c, a=-2c+d şi deduci
Dar
Cu acestea ecuaţia se scrie
Pentru că matricele B şi I_2 sunt liniar independente (adică
deci d=0,