Niste idei…
1.
2.
3.
Inregistrati-va pentru a beneficia de cunostintele comunitatii, a pune intrebari sau a a raspunde la intrebarilor celorlalti.
Suntem o comunitate care incurajeaza educatia si in care se intalnesc know-how-ul si experienta cu perspective inovative de abordare a problemelor.
Autentificati-va pentru a pune intrebari, a raspunde la intrebarilor celorlalti sau pentru a va conecta cu prietenii.
V-ati uitat parola ? Introduceti adresa de email si veti primi o noua parola.
Please briefly explain why you feel this question should be reported.
Va rugam explicate, pe scurt, de ce credeti ca aceasta intrebare trebuie raportata.
Motivul pentru care raportezi utilizatorul.
1)Fie ; e^x+1=t^2 -> 2t.dt=e^xdx si e^x=t^2-1->dx=2tdt/(t^2-1)
I=∫▒1/√((e^x+1) )dx=2∫▒dt/(t^2-1)=∫▒dt/(t-1) – ∫▒dt/(t+1)=ln((t-1)/(t+1))=ln((√((e^x+1) )-1)/(√((e^x+1) )+1))
2)Vom pune expresia e^x(x^2-2x+1)/(x2+1)^2=e^x/(x^2+1)-e^x.2x/(x^2+1)^2
I=∫▒〖(e^x.(x^2-2x+1))/(x^2+1)^2 dx〗=∫▒e^x/(x^2+1) dx–∫▒(e^x.(2x))/(((x^2+1)^2 ) ) dx=e^x/(x^2+1)
3)∫_0^1▒(x^2+1)/(x^4+1)dx=∫_0^1▒(x^2+1)/((x^4+2x^2+1)-2x^2)dx=∫_0^1▒(x^2+1)/((x^2+1)^2-(√2.(x) )^2)dx=
∫_0^1▒(x^2+1)/((x^2+√2.x+1).(x^2-√2.x+1) )dx=(.1/2).(∫_0^1▒dx/(x^2-√(2.).x+1)+∫_0^1▒dx/(x^2+√2.x+1))=
(1/2)((∫_0^1▒dx/((x-1/(√2))^2+1/2))+(∫_0^1▒dx/((x+1/(√2))^2+1/2)) )=√2(arctg(√2.(x-1/(√2)) )-arc tg(√2.(x+1/(√2)) ) )
Bună dimineața,
Va rog mult , folosiți „tex”….Bieții elevi nu știu ce pot înțelege din raționamentul Dvs.?!?!
Mulțumesc mult!
Toate cele bune,
Integrator