1. a). Sa se arate ca pt orice n apartine N* avem: k[x]<=[kx]<=k[x]+k-1 ,oricare ar fi x din R .
b) Daca pentru x din R .definim S(x)=[x]+[2x]+[4x]+[8x] sa se arate ca S(x) nu apartine intervalului (11,15) (oricare ar fi x real) iar apoi sa se rezolve in R ecuatia S(x)=1500014.
2. Sa se rezolve ecuatia in R: [(10x+1)/5]+[(10x+6)/5]=3[(10x-9)/5].
,unde [.] reprezinta partea intreaga.
1.
deoerece stim ca ![Rendered by QuickLaTeX.com [x+k]=[x]+k,k\in Z](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-54db50436b167515da0a4807ecaffe8b_l3.png)
deci ![Rendered by QuickLaTeX.com [k\{x\}]\leq k-1](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-1306866f8d17d1b50c85032766b3e3f4_l3.png)
de asemenea
de unde rezulta dubla inegalitate.
b)daca x<1,
deci ![Rendered by QuickLaTeX.com [x]+[2x]+[4x]+[8x]<1+3+7=11](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-f0709469d3187c77fa5653c4bb7ec39b_l3.png)
![Rendered by QuickLaTeX.com x\geq 1,[x]\geq 1,[2x]\geq 2,[4x]\geq 4,[8x]\geq 8\Rightarrow [tex][x]+[2x]+[4x]+[8x]\geq 15](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-3bf0a2f6dc0b85b259acbd9726e1055f_l3.png)
![Rendered by QuickLaTeX.com (11,15)](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-04c0f2de44047fad4f5ac6209d6c97fe_l3.png)
daca
deci suma de parti intregi nu poate fi in
Sau,putem folosi inegalitatea
deci suma nu poate fi intre 11 si 15.
pentru a rezolva inecuatia,
deci ![Rendered by QuickLaTeX.com [x]\leq 100000](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-f40a0ce23bb862ef82c54ef12aa704de_l3.png)
deci
de unde
deci
asadar ecuatia nu are solutii.
de asemenea
problema 2
deci avem de rezolvat ecuatia:
sau
deci
de unde
deci
deci
si ecuatia are solutii in intervalul ![Rendered by QuickLaTeX.com \left[\frac{34}{10},\frac{39}{10}\right)](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-7d154a105d9a79f31ef80162300e1f58_l3.png)
notam cu