pt n=2 , m=4*n=4*2=8 , avem sirul 1 2 3 4 5 6 7 8 , gasiti 2 sume egale , acestea sunt s1=1+2+3+4+8 ; s2=5+6+7
pt n=3 , m=4*n=4*3=12 , avem sirul 1 2 3 4 5 6 7 8 9 10 11 12 , sumele egale s1=1+2+3+10+11+12 ; s2=4+5+6+7+8+9
intreabare : cum pot gasi s1 si s2 pentru oricare ar fi 2<=n<=1000 ,8<=m<=4000 ?
S1=(1+2+3+…+n)+[(3n+1)+(3n+2)+(3n+3)+…+4n)]
S2=(n+1)+(n+2)+(n+3)+…+3n
Dem:
1+2+3+…+n=n(n+1)/2
[(3n+1)+(3n+2)+(3n+3)+…+4n)]=
=(1+2+3+…+4n)-(1+2+3+…+3n)=
=[4n(4n+1)/2]-[3n(3n+1)/2]=
=(7n^2+n)/2
S1=[n(n+1)/2]+[(7n^2+n)/2]=(8n^2+2n)/2
S2=(1+2+3+…+3n)-(1+2+3+…+n)=[3n(3n+1)/2]-[n(n+1)/2]=
=(8n^2+2n)/2
S1=S2=(8n^2+2n)/2