1.
Z apartine C\R
aflati minimul :
Im(Z^5)/(Im Z)^5
2.
Z apartine C
|z|=1
aratati ca:
|z+1|+|z^2+1|+|z^3+1|>=2
3.
daca
|z1+z2|=sqrt(3)
|z1|=|z2|=1
aratati ca:
|z1-z2|=1
nu stiu din ce carte sunt problemele deoarece profesorul le-a dictat.
1.
Fie
[tex]\[
\frac{{{{\rm Im}\nolimits} z^5 }}{{\left( {{{\rm Im}\nolimits} z} \right)^5 }} = \frac{{{{\rm Im}\nolimits} \left( {a + bi} \right)^5 }}{{\left[ {{{\rm Im}\nolimits} \left( {a + bi} \right)} \right]^5 }}
\][/tex]
Se calculeaza, ca
. Deci avem:
Fie
, si primim
Sa demonstram, ca
:
In concluzie,
.
* Mentionez, ca
are loc pentru Im(z)=Re(z).
multumesc
Problema 3:![Rendered by QuickLaTeX.com {\left| {{z_1} + {z_2}} \right|^2} + {\left| {{z_1} - {z_2}} \right|^2} = 2\left( {{{\left| {{z_1}} \right|}^2} + {{\left| {{z_2}} \right|}^2}} \right)](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-351fafb52fda3e76d3b02095d118de3a_l3.png)
![Rendered by QuickLaTeX.com \begin{array}{l} S = {\left| {{z_1} + {z_2}} \right|^2} + {\left| {{z_1} - {z_2}} \right|^2} = 2\left( {{{\left| {{z_1}} \right|}^2} + {{\left| {{z_2}} \right|}^2}} \right)\\ {\left| {{z_1} + {z_2}} \right|^2} = \left( {{z_1} + {z_2}} \right)\left( {\overline {{z_1} + {z_2}} } \right) = \left( {{z_1} + {z_2}} \right)\left( {\overline {{z_1}} + \overline {{z_2}} } \right) = {\left| {{z_1}} \right|^2} + {z_1}\overline {{z_2}} + \overline {{z_1}} {z_2} + {\left| {{z_2}} \right|^2}\\ {\left| {{z_1} - {z_2}} \right|^2} = \left( {{z_1} - {z_2}} \right)\left( {\overline {{z_1} - {z_2}} } \right) = \left( {{z_1} - {z_2}} \right)\left( {\overline {{z_1}} - \overline {{z_2}} } \right) = {\left| {{z_1}} \right|^2} - {z_1}\overline {{z_2}} - \overline {{z_1}} {z_2} + {\left| {{z_2}} \right|^2}\\ S = {\left| {{z_1}} \right|^2} + {z_1}\overline {{z_2}} + \overline {{z_1}} {z_2} + {\left| {{z_2}} \right|^2} + {\left| {{z_1}} \right|^2} - {z_1}\overline {{z_2}} - \overline {{z_1}} {z_2} + {\left| {{z_2}} \right|^2} = 2\left( {{{\left| {{z_1}} \right|}^2} + {{\left| {{z_2}} \right|}^2}} \right) \end{array}](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-ea3275804f32b739742219350216e1e5_l3.png)
Vom folosi aceasta identitate:
Demonstratia identităti:
Revin la problema:
![Rendered by QuickLaTeX.com {\left| {{z_1} - {z_2}} \right|^2}\, = \limits^{{\rm{conform identitati}}} \,2\left( {{{\left| {{z_1}} \right|}^2} + {{\left| {{z_2}} \right|}^2}} \right) - {\left| {{z_1} + {z_2}} \right|^2} = 2 \times 2 - 3 = 1](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-4b288dee2aa4b04a9853cd62f751947f_l3.png)
Problema 2 a fost rezolvata pe un alt forum de matematica !!!
multumesc