Calculati
a) 1+3+5+….+99
b) 2+4+6+…100
Inregistrati-va pentru a beneficia de cunostintele comunitatii, a pune intrebari sau a a raspunde la intrebarilor celorlalti.
Suntem o comunitate care incurajeaza educatia si in care se intalnesc know-how-ul si experienta cu perspective inovative de abordare a problemelor.
Autentificati-va pentru a pune intrebari, a raspunde la intrebarilor celorlalti sau pentru a va conecta cu prietenii.
V-ati uitat parola ? Introduceti adresa de email si veti primi o noua parola.
Please briefly explain why you feel this question should be reported.
Va rugam explicate, pe scurt, de ce credeti ca aceasta intrebare trebuie raportata.
Motivul pentru care raportezi utilizatorul.
1). 1+3+5+…+99=…. Este de forma 1+3+5+…+2n-1 =n*n;
99=2n-1 de unde 2n=99+1=100 => n=50 .Deci suma S=50*50=2500;
2). 2+4+6+…+100=… este de forma 2+4+6+…+2n=n*(n+1);
=> 2n=100 deci n=5o => S=50*51=2550;
Mersi mult.
2+4+6+…+100 = 2(1+2+3+…+50) si atunci ai 2 * 50*51:2 , adica 50*51
1+3+5+….+99 = 1+(1+2)+(1+4)+….+(1+98)
(1+1+…+1) + 2(1+2+3+…49)
50+2*49*50:2 = 50+49*50
cam asa
Corect !
deci 1+3+…+99= 50*(1+49)=50*50 !
(adica sumele de forma 1+3+5+…+2n-1 =n*n asa cum am transmis si eu)
Nu inteleg de ce 1+3+5+…+99 este de forma 1+3+5+…+2n-1=n*n si 2+4+6+…+100 este de forma 2+4+6+…+2n=n*(n+1).
Atunci 3+7+11+15+…+43 sau 1+2+3+…+100 de ce forma sunt?
Sunt rezultate din suma lui gauss,adica pentru un „sir” de numere de forma:
![Rendered by QuickLaTeX.com \sum\limits_{k = 1}^n {\left( {2k - 1} \right)} = 2 \cdot \sum\limits_{k = 1}^n k - \sum\limits_{k = 1}^n 1 \\ \sum\limits_{k = 1}^n k = \frac{{n(n + 1)}}{2} \\ \sum\limits_{k = 1}^n 1 = n \\ - - - - - - - - \\ \sum\limits_{k = 1}^n {\left( {2k - 1} \right)} = 2 \cdot \sum\limits_{k = 1}^n k - \sum\limits_{k = 1}^n 1 = 2 \cdot \frac{{n(n + 1)}}{2} - n = n^2 \\](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-1dca74afab278f8069c79bb5332726ff_l3.png)
1+3+5+…+2n-1 ca sa aflam suma acestui sir procedem:
Pt exercitiul tau,care cere sa se calculeze:
![Rendered by QuickLaTeX.com {\rm 1 + 3 + 5 + }...{\rm + 99 = ??}](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-5e420250677e0e98e7045c7ae243ac18_l3.png)
![Rendered by QuickLaTeX.com {\rm 3 = 2 + 1} \\ {\rm 5 = 4 + 1} \\ {\rm 7 = 6 + 1} \\ .......... \\ {\rm 99 = 98 + 1} \\](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-9d10086ce370ea794aa516b3cdbc8538_l3.png)
Putem fie folosim rezultatul de mai sus(mai scurt) fi ne folosim de observatia:
Adunand toate sumele astea se obtine:
![Rendered by QuickLaTeX.com {\rm 1 + 3 + }...{\rm + 99 = 1 + 2 + 1 + 4 + 1 + }....{\rm + 98 + 1} \\ {\rm = 50} \cdot {\rm 1 + 2 + }...{\rm + 98} \\ {\rm = 50 + 2(}\underbrace {{\rm 1 + }...{\rm + 49}}_{{\rm Suma}{\rm .Gauss}}{\rm )} \\ {\rm = 50 + 2}\left( {\frac{{{\rm 49} \cdot {\rm 50}}}{{\rm 2}}} \right) = ... = 50^2 \\](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-6a62925de3316e55f8c356b14cf4cfe7_l3.png)
deci este de forma:
” Observam ca termenii sumei cresc din 4 in 4 ”
Adica:
Am inteles, multumesc.
Buna Seara sunt Radu ,multumesc si eu ptr explicatii abia acum am inteles;mii de multumiri ca existati;domnii invatatori si profesori lucreaza numai cu cei care merg la concursuri noua celorlalti nu prea ne explica ;asta este sistemul de invatamant ;ma bucur ca existati ,stiu ca ma repet dar eu multe metode le-am inteles din explicatiile voastre vizualizand subiectele propuse ; bafta si succcese sa aveti !!! 😀 😉
va multumesc ca existati!!!!!!Acum am inteles si eu !!!!
Si eu m-am impotmolit la acest gen de ex. De obicei le rezolc cu formula n(n+1)/2. Dar la ex. 3+7+11+15+….+43 de unde iti dai seama ca 3 trebuie adunat de 11 ori, cum ai spus? Sau la ex 1+3+5+..+99 apare la un momendar 50+ceva . De unde acel 50?
Astept si ue un raspuns, daca se poate.
Multumesc!
Care este metoda exacta de calcul a sumei Gauss?Sunt la inceput si nu am prea inteles exact cum se calculeaza..Multumesc mult!🙂
Matematicianul Gauss a folosit proprietatile adunarii pentru a calcula o suma de numere naturale consecutive.
Exemplu:
1)1+2+3+4+.96+97+98+99+100=(1+100)+(2+99)+(3+98 )+(4+97)++(45+46)=101+101+101+101=101*100/2=….
Buna! Am scris mai sus o intrebare: „Care este metoda exacta a calcularii sumei Gauss?”.Prin asta,vroiam sa intreb cum se calculeaza exact? Imi puteti spune? Sau sa imi aratati un model mai simplu pentru calcularea sumei Gauss.Multumesc 🙂
suma lui „Gauss” se refera la suma primelor n numere naturale consecutive … , si regula de calcul este:
![Rendered by QuickLaTeX.com \rm{S_n=1+2+3+ . . . +n-2 + n-1 + n =\frac{n \cdot (n+1)}{2}](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-1e67dc86096112f4385135be73a3547c_l3.png)
![Rendered by QuickLaTeX.com \rm{ S_n=2+4+6+...+2n=2(1+2+3+...+n)=2\cdot \frac{n\cdot(n+1)}{2}=n\cdot(n+1)}](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-11728a1a62a61e321193188f283d3b8e_l3.png)
![Rendered by QuickLaTeX.com \rm{S_n=1+3+5+...+2n-1=1+(1+1*2)+(1+2*2)+(1+3*2)+...=\underbrace{1+1+...+1}_{n-ori}+2(1+2+3+...+n)= n^2}](https://anidescoala.ro/wp-content/ql-cache/quicklatex.com-fe738e75e27ab3aff825b809495bdfaf_l3.png)
Toate formele care apar in diverse exercitii se pot reduce la aceasta formula!
Exemplu:
Suma primelor n numere pare consecutive:
Suma primelor n numere impare consecutive:
„n” se calculeaza cu ajutorul ultimului termen al sumei …
Multumesc mult pentru raspunsuri !🙂
Multumesc caut de mult astea!!!!
nu stiu 9+99+999+…99…9(de 1998 ori 9).ajutati-ma
S = 9 +99 +999 + … 99…9 (de 1989 ori) <=>
S + 1989 = (9+1) + (99+1) +(999+1) + … (99 … 9 + 1) <=>
S + 1989 = 10 + 100 + 1000 + … + 100…0 (de 1989 ori 0)
de aici incolo cared ca te descurci tu…
multumesc mult
a) 1+3+5+….+99
1+3+5+…+99=
=1+2+3+4…..+98+99 -(2+4+6+…+98 )=
=99*100 totul supra 2 -2(1+2+3+…+49 )=
=99*50 – 2 * 49*50 totul supra 2=
=99*50 -49*50=
=50(99-49)=
=50*50=2500
1.Mihai afirma ca pretul unei carti s-a micsorat cu 10 procente.Calculati pretul pe care trebuie sa-l plateasca Mihai,stiind ca pretul initial a fost 10 lei.
2.Alexandra are un penar pe care a dat 20 de lei.Pretul penarului s-a marit cu 20 de procente .
a) Calculati cu cati lei s-a marit pretul penarului.
b) Calculati cat costa penarul dupa marire.
1. Pentru a afla 10% dintr-un număr trebuie să împarţi numărul respectiv la raportul lui 100 şi 10(adică 100:10=10).De aici te descurci.
2. Pentru a afla 20% dintr-un număr trebuie să-l împarţi la raportul dintre 100 şi 20, adică 5. Acum te descurci,nu ?