Va rog sa ma ajutati. Determinati numerele rationale pozitive x, y, z stiind ca sunt invers proportionale cu nr 6, 4, 3 si verifica egalitatea 1/xy+1/yz+1/zx=24 Solutiile care imi dau nu verifica egalitatea. Multumesc anticipat.
Inregistrati-va pentru a beneficia de cunostintele comunitatii, a pune intrebari sau a a raspunde la intrebarilor celorlalti.
Suntem o comunitate care incurajeaza educatia si in care se intalnesc know-how-ul si experienta cu perspective inovative de abordare a problemelor.
Autentificati-va pentru a pune intrebari, a raspunde la intrebarilor celorlalti sau pentru a va conecta cu prietenii.
V-ati uitat parola ? Introduceti adresa de email si veti primi o noua parola.
Please briefly explain why you feel this question should be reported.
Va rugam explicate, pe scurt, de ce credeti ca aceasta intrebare trebuie raportata.
Motivul pentru care raportezi utilizatorul.
1/xy+1/yz+1/zx=24 (1)
Din enunt rezulta x/(1/6)=y/(1/4)=z/(1/3) adica 6x=4y=3z |:12 deoarece [6,4,3]=12 rezulta x/2=y/3=z/4=k , unde k E Q , rezulta x=2k ; y=3k si z=4k inlocuim in (1) :
1/(6k^2) + 1/(12k^2)+1/(8k^2)=24 |*(k^2)/24 rezulta k^2 = (1/24)(1/6 + 1/12 +1/8) =(1/24)(9/24) = (3/24)^2 rezulta k=1/8 rezulta x=… ,…
Continua tu