Aflati n apartine lui N pentru care S=1 la puterea n+2 la puterea n+3 la puterea n+4 la puterea n+5 la puterea n, este divizibil cu 15
Inregistrati-va pentru a beneficia de cunostintele comunitatii, a pune intrebari sau a a raspunde la intrebarilor celorlalti.
Suntem o comunitate care incurajeaza educatia si in care se intalnesc know-how-ul si experienta cu perspective inovative de abordare a problemelor.
Autentificati-va pentru a pune intrebari, a raspunde la intrebarilor celorlalti sau pentru a va conecta cu prietenii.
V-ati uitat parola ? Introduceti adresa de email si veti primi o noua parola.
Please briefly explain why you feel this question should be reported.
Va rugam explicate, pe scurt, de ce credeti ca aceasta intrebare trebuie raportata.
Motivul pentru care raportezi utilizatorul.
Fie S=1^n + 2^n + 3^n + 4^n + 5^n
Daca 15 | S rezulta 3 | S si 5 | S
Fie n=4k
Analizam 3 | S
2^4k=16^k=(3*5+1)^k=(M3+1)^k=M3+1 , unde M3=multiplu de 3
3^4k=M3
4^4k=(3+1)^4k=M3+1
5^4k =(5^2)^2k=(8*3+1)^2k=(M3+1)^2k=M3+1
S=1+M3+1 +M3+M3+1+M3+1=M3+1, nu avem solutii
Fie n=4k+1
Analizam 3 | S
2^(4k+1)=2*2^4k=2*(M3+1)=M3+2
3^(4k+1)=M3
4^(4k+1)=4*4^4k=4*(M3+1)=M3+1
5^(4k+1) =5*5^4k =5*(M3+1)=M3+5=M3+2
S=1+M3+2 +M3+M3+1+M3+2=M3 (1)
Analizam 5 | S
2^(4k+1)=2*2^4k=2*(M5+1)=M5+2
3^(4k+1)=3*3^4k=3*(M5+1)=M5+3
4^(4k+1)=4*4^4k=4*(M5+1)=M5+4
5^(4k+1) =M5
S=1+M5+2 +M5+3+M5+4+M5=M5 (2),
Din (1) si (2) rezulta 15 | S deci n=4k+1 este solutie (3)
Fie n=4k+2
Analizam 3 | S
2^(4k+2)=(2^2)*2^4k=4*(M3+1)=M3+1
3^(4k+2)=M3
4^(4k+2)=(4^2)*4^4k=16*(M3+1)=M3+1
5^(4k+2) =(5^2)*5^4k =25*(M3+1)=M3+1
S=1+M3+1 +M3+M3+1+M3+1=M3+1 , nu este solutie
Fie n=4k+3
Analizam 3 | S
2^(4k+3)= 4*2^(4k+2)=2*(M3+1)=M3+2
3^(4k+3)=M3
4^(4k+3) = 4*4^(4k+2)=4*(M3+1)=M3+1
5^(4k+3)=5*5^(4k+2) =5*(M3+1)=M3+2
S=1+M3+2 +M3+M3+1+M3+2=M3 (4)
Analizam 5 | S
2^(4k+3)=4*2^(4k+1)=4*(M5+2)=M5+3
3^(4k+3)= 9*3^(4k+1)=9*(M5+3)=M5+2
4^(4k+3) = 16*4^(4k+1)=16*(M5+4) =M5+4
5^(4k+3)=M5
S=1+M5+3 +M5+2+M5+4+M5=M5 (5)
Din (4) si (5) rezulta 15 | S deci n=4k+3 este solutie (6)
Din (3) si (6) rezulta orice numar n impar este solutie.