Inregistrare

Inregistrati-va pentru a beneficia de cunostintele comunitatii, a pune intrebari sau a a raspunde la intrebarilor celorlalti.

Suntem o comunitate care incurajeaza educatia si in care se intalnesc know-how-ul si experienta cu perspective inovative de abordare a problemelor.

Aveti deja cont ? Login


Aveti deja cont ? Autentificare

Login

Autentificati-va pentru a pune intrebari, a raspunde la intrebarilor celorlalti sau pentru a va conecta cu prietenii.

Inregistrare

Resetare parola?

Nu aveti cont ? Inregistrare

Resetare parola

V-ati uitat parola ? Introduceti adresa de email si veti primi o noua parola.

Aveti deja cont ? Autentificare

Va rugam sa va autentificati.

Resetare parola?

Nu aveti cont ? Inregistrare

Please briefly explain why you feel this question should be reported.

Va rugam explicate, pe scurt, de ce credeti ca aceasta intrebare trebuie raportata.

Motivul pentru care raportezi utilizatorul.

LoginInregistrare

AniDeȘcoală.ro

AniDeȘcoală.ro Logo AniDeȘcoală.ro Logo

AniDeȘcoală.ro Navigation

  • TEME
  • FUN
  • SCOALA
  • DEX
  • PARENTING
CAUTA
PUNE O INTREBARE

Mobile menu

Inchide
PUNE O INTREBARE
  • HOME
  • TEME
    • Matematica
    • Limba romana
    •  Istorie
    •  Chimie
    • Biologie
    • Geografie
    •  Fizica
    • Informatica
    • Limbi straine
      • Engleza
      • Franceza
      • Germana
      • Altele
    • Diverse
    • Provocari
  • FUN
    • Povești pentru copii
      • Povesti nemuritoare
      • Povesti scurte cu talc
      • Alexandru Mitru
      • Anton Pann
      • Calin Gruia
      • Constanta Nitescu
      • Dumitru Almas
      • Elia David
      • Emil Garleanu
      • Grigore Alexandrescu
      • Ion Creanga
      • Ion Luca Caragiale
      • Marcela Penes
      • Marin Sorescu
      • Petre Ispirescu
      • Victor Eftimiu
      • Alti autori romani
      • Autori straini
        • Antoine de Saint Exupery
        • Charles Perrault
        • Edmondo de Amicis
        • Erika Scheuering
        • Esop
        • Felix Salten
        • Fraţii Grimm
        • Hans Christian Andersen
        • Jean de la Fontaine
        • Johanna Spyri
        • Lev Nicolaevici Tolstoi
        • Rudyard Kipling
        • Virginia Waters
        • Alti autori straini
    • Poezii
      • Grigore Vieru
      • Elena Farago
      • George Toparceanu
      • George Cosbuc
      • Mihai Eminescu
      • Nicolae Labis
      • Otilia Cazimir
      • Tudor Arghezi
      • Vasile Alecsandri
      • Alti autori
    • Stiati ca...
      • Romania
      • Sistemul solar
      • Plante
      • Animale
      • Superlative geografice
      • Altele
    • Citate celebre
    • Proverbe
    • Ghicitori
    • Glume si bancuri
    • Teste de cultura generala
    • Teste de personalitate
    • Probleme distractive
    • Activitati educative
    • Sfaturi practice
    • Planșe de colorat
    • Jocuri in aer liber
    • Abilitati practice
    • Jocuri distractive
    • Cantece pentru copii
    • Codul bunelor maniere
  • SCOALA
    • Matematica
      • Formule Algebra
      • Formule Geometrie
      • Formule Analiza
    • Gramatica
      • Stii sa scrii ?!
      • Părți de propoziție
      • Părți de vorbire
      • Cazurile
      • Sintaxa
      • Diverse
    • Limba romana
      • Bacalaureat
      • Abecedar
    • Cultura generala
  • IARNA
    • Colinde pentru copii
    • Povești de iarnă
    • Povești de Crăciun
    • Craciunul ... ce, cum, cand ?
  • DEX
  • PARENTING
  • PUNCTE SI RANGURI
  • FAQ
  • CONTACT
Home/ Intrebari/Q 78420
Urmator
In Process

AniDeȘcoală.ro Latest Intrebari

ali
alimaestru (V)
Pe: 16 octombrie 20122012-10-16T16:54:01+03:00 2012-10-16T16:54:01+03:00In: MatematicaIn: Clasele V-VIII

Pentru denis si diamon

Voi folosi pe rând afirmatiile:
\begin{array}{l} 	n \vdots 3 \Rightarrow 3n \vdots 9 \to {\rm{se poate demonstra intr - un rand}}\\ 	\left\{ \begin{array}{l} 	n \vdots 3\\ 	m \vdots 3 	\end{array} \right. \Rightarrow \left( {m + n} \right) \vdots 3 \to {\rm{proprietate cl a - 5}} 	\end{array}
Continuare demonstratie:
\begin{array}{l} 	{S_{1 - 1}} = {7^{n - 1}} + ... + 1 \vdots 3\\ 	\underline {{\rm{Metoda 1}}} \\ 	{\rm{regrupare termeni convenabil}}:\\ 	{S_{1 - 1}} = \underbrace {{\rm{1 + 7 + }}{{\rm{7}}^2}}_{ = 57 = 19 \times 3} + ... + {7^{n - 3}} + {7^{n - 2}} + {7^{n - 1}} = 19 \times 3\left( {1 + {7^3} + {{..7}^{n - 3}}} \right) \Rightarrow {S_{1 - 1}} \vdots 3 \to \left( {{\rm{relatie 1}}} \right)\\ 	{\rm{Continuare solutie diamond: }}S = {S_2} + {S_1}\\ 	{S_1} = {7^n} - 1 = 6{S_{1 - 1}} = 2 \times 3{S_{1 - 1}} \to \left( {{\rm{relatie 1}} + {\rm{afirmatii inceput}}} \right) \Rightarrow {S_1} \vdots 9 	\end{array}
Oare d-lor puteti continua si pentru S_2 ….

  • 0
  • 0
  • 66
  • 0
  • Share
    • Share pe Facebook
    • Share pe Twitter
    • Share pe WhatsApp

Similare

  • Poate cineva sa mă ajute de la ...
  • z = cos 23pi/17 - i sin ...
  • 1) Cate numere naturale de cinci cifre ...
  • Mulțumesc anticipat de răspuns.
  • Calculaţi aria trapezului cu lungimile bazelor 6cm ...
  • Buna! Ma puteti ajuta la aceasta varianta ...

6 raspunsuri

  1. dennis9091
    dennis9091 guru (IV)
    2012-10-16T17:14:20+03:00A raspuns pe 16 octombrie 2012 la 5:14 PM

    De unde stim ca n este divizibil cu 3 ?

      • 0
    • Raspunde
  2. ali
    ali maestru (V)
    2012-10-16T17:15:01+03:00A raspuns pe 16 octombrie 2012 la 5:15 PM

    dennis9091 wrote: De unde stim ca n este divizibil cu 3 ?


    ?
    Te referi la prima afirmatie ?

      • 0
    • Raspunde
  3. dennis9091
    dennis9091 guru (IV)
    2012-10-16T17:15:39+03:00A raspuns pe 16 octombrie 2012 la 5:15 PM

    da

      • 0
    • Raspunde
  4. ali
    ali maestru (V)
    2012-10-16T17:18:26+03:00A raspuns pe 16 octombrie 2012 la 5:18 PM

    Este un punct de teorie … nu am zis nimic de n ..pe mine ma interesa faptul ca daca n este divizibil cu 3 atunci 3n va fi automat divizibil cu 9 Ce este marcat cu rosu ma interesa pe mine in solutie….
    Citeste solutia bine de tot pana o întelegi .. ai sa vezi ca o sa-ti pare rău ca n-ai încercat de unul singur 🙂

      • 0
    • Raspunde
  5. dennis9091
    dennis9091 guru (IV)
    2012-10-16T17:45:10+03:00A raspuns pe 16 octombrie 2012 la 5:45 PM

    Nu stiu ce sa zic. Imi place demonstratia, inteleg, doar urmatorul lucru nu il pricep: Voi folosi pe rând afirmatiile: ……………….. .

      • 0
    • Raspunde
  6. diamondminer
    diamondminer
    2012-10-17T08:54:33+03:00A raspuns pe 17 octombrie 2012 la 8:54 AM

    Eu urmaream cu interes postarile de la clasa a VII-a. Cand colo, ce sa vezi, se lucra de zor la clasa a VIII-a!!!!!!

    Am urmat indicatiile. Cred ca s-a defintivat.

         	\[\begin{array}{l} 	\\ 	{\rm{Aratati ca }}p = {13^n} + {7^n} - 2 \vdots 9\\ 	 -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - \\ 	{\rm{ }}p = {13^n} + {7^n} - 2 \Leftrightarrow {\rm{ }}p = \underbrace {{{13}^n} - 1}_{} + \underbrace {{7^n} - 1}_{}\\ 	{\rm{Din}}\left\{ {{x^0} + {x^1} + {x^2} + ... + {x^{n - 1}} = \frac{{{x^n} - 1}}{{x - 1}}} \right. \Rightarrow \left\{ \begin{array}{l} 	{13^n} - 1 = (13 - 1)({13^{n - 1}} + {13^{n - 2}} + ... + 13 + 1)\\ 	{7^n} - 1 = (7 - 1)({7^{n - 1}} + {7^{n - 2}} + ... + 7 + 1) 	\end{array} \right\} \Rightarrow p = 12({13^{n - 1}} + {13^{n - 2}} + ... + 13 + 1) + 6({7^{n - 1}} + {7^{n - 2}} + ... + 7 + 1) \Rightarrow \\ 	 \Rightarrow p = \left\{ \begin{array}{l} 	2\left[ {6({{13}^{n - 1}} + {{13}^{n - 2}} + ... + 13 + 1) + 3({7^{n - 1}} + {7^{n - 2}} + ... + 7 + 1)} \right]\\ 	3\left[ {4({{13}^{n - 1}} + {{13}^{n - 2}} + ... + 13 + 1) + 2({7^{n - 1}} + {7^{n - 2}} + ... + 7 + 1)} \right]\\ 	6\left[ {2({{13}^{n - 1}} + {{13}^{n - 2}} + ... + 13 + 1) + ({7^{n - 1}} + {7^{n - 2}} + ... + 7 + 1)} \right] 	\end{array} \right\} \Rightarrow \left\{ \begin{array}{l} 	p = M2 \Rightarrow p \vdots 2\\ 	p = M3 \Rightarrow p \vdots 3\\ 	p = M6 = 2*M3 \Rightarrow p \vdots 3 	\end{array} \right\}\\ 	{\rm{Ne convin ultimele doua cazuri}}{\rm{.}}\\ 	{\rm{Trebuie sa demonstram ca si ce se gaseste in paranteza mare }}\left[ {...} \right]{\rm{ este multiplu de 3}}{\rm{.}}\\ 	\\ 	\\ 	{\rm{Daca }}{S_1} \vdots 3{\rm{ si }}S{}_2 \vdots 3{\rm{  atunci }}({S_1} + S{}_2) \vdots 3 \Rightarrow \left\{ \begin{array}{l} 	\left[ {{S_{d3}} = \underbrace {4({{13}^{n - 1}} + {{13}^{n - 2}} + ... + 13 + 1)}_{{S_1}} + \underbrace {2({7^{n - 1}} + {7^{n - 2}} + ... + 7 + 1}_{{S_2}})} \right]\\ 	\left[ {{S_{d6}} = \underbrace {2({{13}^{n - 1}} + {{13}^{n - 2}} + ... + 13 + 1)}_{{S_1}} + \underbrace {({7^{n - 1}} + {7^{n - 2}} + ... + 7 + 1}_{{S_2}})} \right] 	\end{array} \right\}\\ 	{\rm{Grupam convenabil cele doua sume }} \Rightarrow \left[ \begin{array}{l} 	\left\{ \begin{array}{l} 	{S_1} = 4 + 4*13 + 4*{13^2} + ... + 4*{13^{n - 3}} + 4*{13^{n - 2}} + 4*{13^{n - 1}} \Leftrightarrow {S_1} = \underbrace {(4 + 4*13 + 4*{{13}^2})}_{3*244}\underbrace {(1 + ... + {{13}^{n - 3}} + {{13}^{n - 3}} + {{13}^{n - 3}})}_a\\ 	{S_2} = 2 + 2*7 + 2*{7^2} + ... + 2*{7^{n - 3}} + 2*{7^{n - 2}} + 2*{7^{n - 1}} \Leftrightarrow {S_2} = \underbrace {(2 + 2*7 + 2*{7^2})}_{3*38}\underbrace {(1 + ... + {7^{n - 3}} + {7^{n - 3}} + {7^{n - 3}})}_b 	\end{array} \right\}\\ 	\left\{ \begin{array}{l} 	{S_1} = 2 + 2*13 + 2*{13^2} + ... + 2*{13^{n - 3}} + 2*{13^{n - 2}} + 2*{13^{n - 1}} \Leftrightarrow {S_1} = \underbrace {(2 + 2*13 + 2*{{13}^2})}_{3*122}\underbrace {(1 + ... + {{13}^{n - 3}} + {{13}^{n - 3}} + {{13}^{n - 3}})}_a\\ 	{S_2} = 1 + 7 + {7^2} + ... + {7^{n - 3}} + {7^{n - 2}} + {7^{n - 1}} \Leftrightarrow {S_2} = \underbrace {(1 + 7 + {7^2})}_{3*19}\underbrace {(1 + ... + {7^{n - 3}} + {7^{n - 3}} + {7^{n - 3}})}_b 	\end{array} \right\} 	\end{array} \right]\\ 	\\ 	 \Rightarrow \left\{ \begin{array}{l} 	{S_{d3}} = {s_1} + {s_2} = (3*244*a) + (3*38*b) = 3\left[ {(244*a) + (38*b)} \right]\\ 	{S_{d6}} = {s_1} + {s_2} = (3*122*a) + (3*19*b) = 3\left[ {(122*a) + (38*b)} \right] 	\end{array} \right\} \Rightarrow p = {13^n} + {7^n} - 2 \vdots 9 	\end{array}\]

      • 0
    • Raspunde
Raspunde

Raspunde
Anulează răspunsul


Sidebar

PUNE O INTREBARE
  • IARNA
    • Colinde pentru copii
    • Povești de iarnă
    • Povești de Crăciun
    • Craciunul ... ce, cum, cand ?
  • FUN
    • Povești pentru copii
    • Povesti scurte cu talc
    • Povesti nemuritoare
    • Poezii
    • Stiati ca...
    • Citate celebre
    • Proverbe
    • Ghicitori
    • Glume si bancuri
  • SCOALA
    • Matematica
      • Formule Algebra
      • Formule Geometrie
      • Formule Analiza
    • Stii sa scrii ?!
    • Comentarii si rezumate
    • Cultura generala

Explore

  • Matematica
  • Limba romana
  •  Istorie
  •  Chimie
  • Biologie
  • Geografie
  •  Fizica
  • Informatica
  • Limbi straine
    • Engleza
    • Franceza
    • Germana
    • Altele
  • Diverse
  • Provocari

Footer

Despre noi

Platforma educationala pentru copii, parinti si profesori. Pune intrebari si primeste raspunsuri de la profesori si utilizatori experimentati. Transmite sugestii, povesti, articole etc.

Utile

  • Puncte si Ranguri
  • FAQ
  • Termeni și condiţii
  • Contact

Proiecte

  • Parenting
  • Dictionar explicativ
  • Matematica
  • Gramatica limbii romane
  • Trafic

Statistici

  • Intrebari : 30.815
  • Raspunsuri : 70.048
  • Best Answers : 401
  • Articole : 5.247
  • Comentarii : 15.544

Inserează/editează legătura

Introdu URL-ul de destinație

Sau leagă-te la conținutul existent

    Nu ai specificat niciun termen de căutare. Arăt elementele recente. Căută sau folosește tastele săgeată sus și jos pentru a selecta un element.