sa se calculeze
lim 1+x+xpatrat+…+x la puterea n -(n+1) ,n E N*.
x->1 –––––––––––––––
x-1
Inregistrati-va pentru a beneficia de cunostintele comunitatii, a pune intrebari sau a a raspunde la intrebarilor celorlalti.
Suntem o comunitate care incurajeaza educatia si in care se intalnesc know-how-ul si experienta cu perspective inovative de abordare a problemelor.
Autentificati-va pentru a pune intrebari, a raspunde la intrebarilor celorlalti sau pentru a va conecta cu prietenii.
V-ati uitat parola ? Introduceti adresa de email si veti primi o noua parola.
Please briefly explain why you feel this question should be reported.
Va rugam explicate, pe scurt, de ce credeti ca aceasta intrebare trebuie raportata.
Motivul pentru care raportezi utilizatorul.
Sper ca e bine!
toata ecuatia limmitei este supra (x-1) dar nu s-a asezat cum trebuie…
Puteti edita un post apasand butonul EDIT in coltul din dreapta sus a casutei. V-as recomanda sa folositi
, macar comenzile de baza. Va fi mult mai usor ca ceilalti sa inteleaga.
Revenind la exercitiu, sperand ca nu am calculat rau, atunci este nedeterminare
si cred ca se foloseste . Din pacate nu prea cunosc cum se procedeaza.
As ruga pe cineva specializat sa calculeze! Multumesc!:)
Sa se calculeze :
Sa distribuim pe (n+1), termenilor sumei din stanga si vom avea ;
Lim(x->1) din [ {(1-1)+(x-1)+(x^2-1)+(x^3-1)+……+(x^n-1)}/(x-1)]=
Lim(x->1) din [1+(x+1)+(1+x+x^2)+(1+x+x^2+x^3)+…..+(1+x+x^2+…+x^(n-1)]=1+2+3+4+…..+n=n.(n+1)/2
Prima limita este ZERO.