In trapezul ABCD de baze AB si CD se dau AB=8 cm ,CD=4cm si inaltimea trapezului de 6cm.Daca diagonalele se intersecteaza in O atunci aria triunghiului ADO este?
Inregistrati-va pentru a beneficia de cunostintele comunitatii, a pune intrebari sau a a raspunde la intrebarilor celorlalti.
Suntem o comunitate care incurajeaza educatia si in care se intalnesc know-how-ul si experienta cu perspective inovative de abordare a problemelor.
Autentificati-va pentru a pune intrebari, a raspunde la intrebarilor celorlalti sau pentru a va conecta cu prietenii.
V-ati uitat parola ? Introduceti adresa de email si veti primi o noua parola.
Please briefly explain why you feel this question should be reported.
Va rugam explicate, pe scurt, de ce credeti ca aceasta intrebare trebuie raportata.
Motivul pentru care raportezi utilizatorul.
indicatii :
A[ADO]/A[ABD]=DO/DB
triunghi DOB asemenea triunghi AOB
Fie OM perpendiculara dusa din O pe DC, pe care o notam cu x
Fie ON perpendiculara dusa din O pe AB, care rezulta 6-x
1)Atr.ADC=(DC*MN)/2=4*6/2=12=Atr.ADO+Atr.DOC=Atr.ADO+(DC*OM)/2=Atr.ADO+4x/2; Deci 12=Atr.ADO+2x (1)
2)Atr.ADB=(AB*MN)/2=8*6/2=24=Atr.ADO+Atr.AOB=Atr.ADO+(AB*ON)/2=Atr.ADO+8*(6-x)/2=Atr.ADO+4(6-x); Deci 24=Atr.ADO+4(6-x) (2)
3)Scadem din (2) pe (1) si avem:
24-12=Atr.ADO+4(6-x)-Atr.ADO-2x; 12=4(6-x)-2x; 12=24-6x; x=2; deci OM=2cm si ON=4cm
4)Inlocuind in (1) rezulta: 12=Atr.ADO+2*2; Atr.ADO=12-4=8cm patrati
OK!